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• methods that only discretize the boundary.
A new numerical method for the rapid solution of Laplace’s equa-

The FDM (finite difference method) and FEM (finite ele-tion in exterior domains and in interior domains with complicated
ment method) belong to the first category. The secondboundaries is presented. The method is based on a formula first

stated by J. J. Thomson and later refined by the authors. The mathe- category includes the MOM (method of moments), but it
matical foundations presented allow for the solution of field prob- is typically characterized by the rapidly evolving BEM
lems by means of geometric construction principles. Specifically, (boundary element method).
the method utilizes the concept of representing equipotential sur-

While comparing the advantages and disadvantages offaces by polynomials for the rapid tracing of these surfaces; and
these two categories of algorithms is beyond the scope ofis, therefore, fundamentally different from previously known tech-

niques which are based on discretizing the domain or the boundary this paper (the reader should refer to [22, 23] for that
of the problem. For the class of problems characterized by irregular purpose). An important distinction to be noted between
domains, the fastest available techniques have traditionally required the two categories is the inability of algorithms which dis-
an O(M ? N) computations, where M is the number of points in-

cretize the entire domain to treat efficiently exteriorside the domain at which the solution is computed and N is the
boundary value problems, such as the problems encoun-number of points used on the boundary. The new method requires

an O(M) computations only and is, therefore, more advantageous tered in aerodynamic calculations, for example, as well
in large scale calculations. This paper presents only the two- as interior problems which have complicated or irregular
dimensional version of the geometric solution of Laplace’s equa- boundaries. For such types of problems, the boundary ele-
tion. Q 1996 Academic Press, Inc.

ment method is almost exclusively applied.
Historically, the BEM have required a number of com-

putations on the order of at least N 2 (O(N 2), for a two-1. INTRODUCTION
dimensional problem), where N is the number of elements
taken on the boundary of the problem. In 1985, RokhlinIn 1891, J. J. Thomson, the discoverer of the electron,
[3] presented a rapid algorithm for solving the integralstated a formula that relates the first derivative of the
equations which result in the application of the BEM. Theelectric field intensity to the mean curvature of an equipo-
Rokhlin method reduced the required number of computa-tential surface. That formula was later proved by others,
tions from O(N 3) or O(N 2) to O(N). Unfortunately, how-but it remained unexploited in any practical purpose to
ever, the method had two main shortcomings:this date.

Over the past three decades, numerical methods have 1. The estimated CPU time of the algorithm was given
rapidly developed in all areas of physics and engineering. by O(N) 1 O(M ? N), where N is the number of points on
In attempts to solve differential equations with known the boundary and M is the number of points inside the
boundary conditions, especially Laplace’s and Poisson’s domain at which the solution is to be computed. Rokhlin
equations, numerical methods have customarily been clas- indicated that his algorithm is the most efficient when the
sified into two broad categories: solution has to be computed at a limited number of points

inside the domain. However, for substantially large M, the• methods that discretize the entire domain, and
method was much less efficient than other fast solvers.

2. The implementation of the Rokhlin algorithm was* To the extent that this article may disclose patentable subject matter,
the first author reserves those rights. quite complicated and challenging for the average physicist
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or engineer. Usually, the average professional seeks the
simplest available tools when the solution of boundary
value problems is desired, even if the CPU time require-
ment is several orders of magnitude higher than other more
sophisticated tools. (This, of course, does not apply to
commercially available software packages, since the algo-
rithmic complexity in such packages can be transparent to

FIG. 1. The electric field vector E is normal to an equipotential curvethe user.)
V at all points. In an arbitrary coordinate system X 2 Y, dx , dy are the

An alternative approach to the same problem was also direction cosines of the vector E.
presented by Mayo [5] and still requires an O(M ? N) opera-
tion. Very recently, Greenbaum et al. [4] presented an
algorithm that is based on the Rokhlin method for solving Thomson’s formula was later proved by others [14–16].
Laplace’s equation in multiply connected domains. Recently, the authors [1] presented a generalized version

It is the objective of this paper to provide a new method of Thomson’s formula that is valid in any direction within
for solving Laplace’s equation in exterior domains and in the field, not necessarily the direction normal to an equipo-
interior domains with complicated or irregular boundaries, tential surface, thereby effectively obtaining a formulation
which is: for the components of Laplace’s equation.

In two dimensions, that general formula is [1]1. quite simple to implement by the average physicist
or engineer; and

2. especially suited for mapping the field inside the iE i
y

5 2iE i dx/x
dy

, (2)
entire domain of the problem (where M is large); and

3. quite rapid, even on desktop workstations and per-
where x,y are the principal directions, and where dx,dy aresonal computers, thereby bringing large scale calculations
the components of a unit vector tangent to the field linein complex domains within practical reach.
along the principal directions (i.e., dx,dy are the direction

The new method is an iterative, finite-difference type cosines of the electric field vector E; see Fig. 1).
method, which is based on geometric construction princi- This paper uses Thomson’s formula (1) and its general-
ples. Unlike the presently known finite-difference tech- ized version (2) to establish a purely geometric method
niques, the new method does not discretize the domain of for the solution of Laplace’s equation using both Dirichlet
the problem into cells, but instead it provides a procedure and Neumann boundary conditions. For the most common
for computing the shape of the equipotential surfaces di- case, where only the Dirichlet conditions are known, the
rectly; where such surfaces are represented by polynomials. new geometric method is combined with an iterative tech-

The theoretical and the experimental developments pre- nique and may be, therefore, called the ‘‘geometric relax-
sented here in the following sections show that such a ation’’ method.
method can be very rapid for quite complex problems. Like all relaxation methods, the number of iterations
Specifically, it will be demonstrated that the new method required for convergence of the new method is a function
requires an O(M) computations only, where M is the num- of the initial guess. In Section 2.3, it is shown that the
ber of points inside the domain at which the solution is number of iterations is an exponentially decreasing func-
computed and is, therefore, an optimal order method. tion of the initial guess. It is demonstrated that if a modest

The geometric method is based on Thomson’s formula initial guess is first obtained with a classical integral-equa-
which was discovered more than a century ago, but the tion solver, by using a small number of points on the bound-
potential of which regrettably remained unrecognized. ary, the speed of convergence of the geometric relaxation
Thomson’s formula appeared in a footnote in his edited is substantial and can exceed the speed of the fastest known
version of Maxwell’s Treatise [12] and states that near an algorithms available today.
equipotential surface, the normal derivative of the magni- This paper is organized as follows: Section 2.1 introduces
tude of the electric field E satisfies the basic concept behind the geometric solution of La-

place’s equation, subject to both Dirichlet and Neumann
boundary conditions. Section 2.2 presents necessary crite-iE i

n
5 2iE i S 1

R1
1

1
R2
D, (1)

ria for reducing the computational errors associated with
the numerical algorithm. Section 2.3 describes a geometric
relaxation algorithm to encompass the category of practicalwhere R1 and R2 are the principal radii of curvature of the

surface at the point under consideration, and n is the nor- problems in which only the Dirichlet conditions are known
and lists some derivations related to the estimation of per-mal direction to the surface at the same point.
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FIG. 2. The potential gradient V/y is known on the boundary, as
well as the potential V. This allows the computation of the electric field
intensity and direction at every point on the boundary.

formance of such relaxation algorithm. Section 3 discusses
some solution examples, in terms of the numerical results
obtained from the computer and in terms of some general

FIG. 3. The boundary of a region where Laplace’s equation holds.mathematical and physical insights provided by the new The boundary intersects equipotential surfaces labeled V1, V2, ..., Vj ,
method. Section 4 contains our conclusions. from the highest to the lowest.

Appendices A and B contain mathematical derivations
which are necessary for understanding the geometric solu-
tion and are referred to in the paper where appropriate.

beled V1, V2, ..., Vj, from the highest to the lowest, asAppendix C lists a detailed, step by step description of
shown in Fig. 3.the practical algorithm which implements the geometric

By using a linearized Taylor series at every point on thesolution inside irregular domains.
equipotential curve V2, we have

2. THEORETICAL FOUNDATIONS
V2 P V1 1

V1

s
Ds, (4)

2.1. The Basic Concept

The geometric method will be explained here in the where s is the distance along the electric field line (Fig. 4).
embodiment of interior domains with closed boundaries. But since
The applicability of the method to exterior domains will
be immediately apparent once the basic concept is under- V

s
5 2iE i, (5)stood.

For the solution of Laplace’s equation, a charge-free
region must be considered. Inside such a region, a closed where the potential is decreasing, thus, in Fig. 4,
equipotential surface cannot exist, since the existence of
such surface necessitates the presence of a source or sink

Ds11 5
V1 2 V2

iE11i
,

(6)

within the volume of space enclosed by that surface (for
proof, see Appendix A). The boundary of the region where
Laplace’s equation holds, therefore, must always intersect

Ds12 5
V1 2 V2

iE12i
, ..., Ds1n 5

V1 2 V2

iE1ni
.and never enclose equipotential surfaces.

We shall now assume that both Dirichlet and Neumann
boundary conditions are given, i.e., both the potential and Now, given n support points on the equipotential V2,
the normal potential gradient. In Section 2.3 we shall relax
the Neumann requirement, since, in most cases, the poten-
tial gradient on the boundary is not known a priori.

The electric field intensity and direction at every point
on the boundary (Fig. 2) can be found from

iE i 5 Ï(V/x)2 1 (V/y)2

(3)
FIG. 4. Equipotential surface V2 can be found by calculating several

dx 5
2V/x

iE i
, dy 5

2V/y
iE i

. distances Ds11, Ds12, ..., Ds1n along the electric flux lines propagating from
surface V1 towards V2. To a first-order approximation, such distances
could be calculated as the ratio of potential difference over the electric
field intensity.Let the potential distribution along the boundary be la-
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plus two points on the boundary, a polynomial of degree since the curvature of equipotentials is not assumed to be
known at the boundary points.n 1 1 can be fitted to represent the equipotential curve V2.

To proceed further inside the domain, we must now Inside the domain, the curvature of an equipotential at
any point can be computed from the polynomial represen-obtain the electric field intensity at n points on the equipo-

tential V2 in order to compute a new set of distances tation y 5 f(x) of the equipotential by using the formula
[7, 8]Ds2i 5 (V2 2 V3)/iE2ii, and hence determine the location

of the equipotential curve V3.
Again, a linearized approximation K 5

y0

(1 1 y92)3/2 , (12)

where y9 5 f 9(x) and y0 5 f 0(x).iE2ii P iE1ii 1
iE1ii

s
Ds1i,

(7) Since the first and second derivatives of the function
y 5 f(x) are required at the support points, it is mosti 5 1, ..., n,
convenient to use the method of interpolation by cubic
splines [8] to represent that function, since the method ofcan be used. The quantity iE1ii/s can be found from one
interpolation by cubic splines features some readily avail-of two possible formulas:
able formulas for computing such derivatives. In Appendix

• if the curvature of the equipotential V1 is known at B, it is shown how each equipotential curve can be repre-
point i, i 5 1, ..., n (see Fig. 4), then Thomson’s formula sented as a group of cubic splines and how the curvature
in two dimensions, at the support points can be computed.

Remark 2.1. From Appendix B and from the descrip-
tion given above, it is apparent that one matrix operationiE1ii

s
5 2K1iiE1ii, (8)

(basically, solution of a tri-diagonal system) is required for
each equipotential curve obtained. The number of un-

can be used directly, where K 5 1/R is the curvature. In knowns in each matrix operation is equal to the number
this case, of support points on the curve. As can be observed from

Appendix B, the solution of such a tri-diagonal system
iE2ii P (1 2 K1iDs1i)iE1ii; (9) requires a number of computations equal to the number

of unknowns. Therefore, for a total number of M support
points obtained inside the domain, the solution requires• if the curvature is unknown at point i, a variation of
an O(M) computations.the general formula (2) must be used. This variation can

be derived as follows: first, we observe that
2.2. Criteria for Selecting the Step Size (Vr 2 Vr11)

In computing the incremental distance Ds to a first-orderiE i
s

5
iE i

x
dx 1

iE i
y

dy. (10) approximation according to Eq. (6), we must find proper
criteria for selecting the step size of potential V1 2 V2,
V22 V3, etc. A too large value will render the first-orderBy selecting a coordinate system such as shown in Fig. 2
approximation invalid, and a too small value may unneces-and substituting from the general formula (2) into Eq. (10),
sarily increase the computation time. Such criteria will nowwe get
be found.iE i

s
5

iE i
x

dx 2
dx

x
iE i. (11) In the Taylor expansion of Eq. (4), the correct formula-

tion for the incremental distance Ds is

This result shows that the first derivative of the electric
Ds 5

V1 2 V2

iE i
1

1
iE i

(13)

field intensity along the flux line can be completely deter-
mined by measurements taken along the boundary.

In order to compute the electric field intensity along the 3 S2V1/s2

2!
(Ds)2 1

3V1/s3

3!
(Ds)3 1 ...D ,

points of equipotential curve V3, the use of Thomson’s
formula is now required at the n points on equipotential but we note that
V2 which lie inside the boundary, since the curvature K
can be computed at those points. For the two points on 2V

s2 5 2
iE i

s
5 K iE i; (14)the boundary, formula (11) must be used. In general, the

quantities iE i/x, dx/x must be evaluated along the
entire boundary before the solution can be carried out, therefore
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is large compared to the value of the curvature K, a large1
iE i

?
2V/s2

2!
(Ds)2 5

K
2

(Ds)2. (15) step size DV can be selected, thus reducing the overall
computation time without loss of accuracy.

When K 5 0 (the case of a flat equipotential), the secondAn estimation for the lower bound of the error in the
derivative in the Taylor expansion of Eq. (13) vanishes.computed distance Ds can now be found as follows: by
The third derivative contains K/s. It can be easily seen,neglecting terms of third order and higher in Eq. (13), we
by using the relation iE i/s 5 2KiE i, that K/suK50 5have, by substitution from (15),
2(2iE i/s2)/iE i; however, since both K/s and 2iE i/
s2 are unknowns, it is not generally possible to find a

Ds P
DV
iE i

1
K
2

(Ds)2, (16) condition similar to (19) when K 5 0. In this case, the
error in the expansion can be minimized by selecting a
small displacement Ds, i.e., selecting DV ! iE i.where the variable DV represents V1 2 V2, or V2 2 V3,

etc., where Vr 2 Vr11, r 5 1, ..., j, is the step size of potential. 2.3. A Geometric Relaxation Algorithm
From Eq. (16),

In the preceding analytical treatment, a geometric
method for solving Laplace’s equation was introduced. The

Ds P
1 6 Ï1 2 4 ? (K/2) ? (DV/iE i)

K
(17) method is based on the assumption that the distributions

of both the potential and the normal potential gradient
are known along the boundary. Since, for most practicalfrom which, when
cases, the normal potential gradient is unknown, the
boundary conditions must first be initialized before the2K DV

iE i
5 1, geometric solution can proceed.

The algorithm now proposed consists of the following
two steps:

we get
1. First, initialize the boundary conditions by using the

classical integral-equation method (see, for example, Breb-
Ds 5

1
K

5
2 DV
iE i (18)

bia [17]), with a small number of points being taken on
the boundary to obtain a reasonable guess for the poten-

5 radius of curvature of the equipotential curve. tial gradient.

2. Apply the geometric method for solving Laplace’s
Therefore, it is clear that when the step size DV 5 iE i/ equation, using the initial guess obtained as a ‘‘seed’’ to
2K, the improved estimation for Ds is 2 DV/iE i, while the start the solution.
original estimation was DV/iE i. An error of about the

The rest of this paper is concerned with the developmentsame order of magnitude as the original estimation is a
of an iterative scheme to improve such solution and withlarge error.
providing some theoretical predictions for the performanceAccordingly, it will be apparent that, given specific val-
of such iterative scheme. As we shall demonstrate, such aues of iE i and K at any point on the equipotential curve,
technique still preserves the O(M) computational effort ofa step size DV must be selected such that
the geometric method and will, therefore, be significantly
faster than the classical O(M ? N) techniques.

DV !
iE i
2K

. (19)
2.3.1. Qualitative Description of the Algorithm

The geometric relaxation algorithm will be explained(Since DV must be unique for all points on the curve, the
best accuracy is obtained by selecting the minimum value here, again, within the embodiment of interior domains

with closed boundaries. The applicability of the algorithmof iE i/2K on the curve.)
It should be further noted from Eq. (15) that the error, to exterior domains will be immediately apparent once the

basic concept is understood. Solution examples for eachrepresented by the second and higher derivatives, is di-
rectly proportional to the curvature of the equipotential of the cases will be presented in Section 3. Appendix C

lists a detailed, step by step description of the practicalat any point. Accordingly, from Eq. (19) it can be seen
that a larger step size DV can be taken if the electric field implementation of this algorithm.

First, the initial guess of the Neumann conditions alongintensity is higher, for some value of K. Equation (19),
therefore, allows for the implementation of an ‘‘adaptive’’ the boundary must be obtained as outlined above.

The points of highest and equal potential on the boundaryalgorithm. At regions where the electric field intensity iE i
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are then selected, following the scheme of Section 2.1. By iEi11i 5 aiiiEii; (20)
building the equipotential surfaces successively, as outlined
in Section 2.1, the region of the problem will be eventually thus,
filled to completion. This will be considered as the first
‘‘iteration’’ in the geometric relaxation method. The iE2i 5 a1iE1i,
method initially requires, as stated, the distributions of

iE3i 5 a2iE2i 5 a2a1iE1i, (21)potential and electric field intensity and direction along
the boundary. Since the potential distribution on the iEii 5 ai21 ... a2a1iE1i.
boundary is given a priori, then the electric field intensity
and direction along the boundary must now be modified

In order to determine how the factor ai is calculated atin order to start a new iteration. If the electric field intensity
each new iteration, we first set the following logical ruleat a particular point is modified, the new direction can be
for adjusting the field intensity iEii:found from Eq. (3), as dx(new) 5 2(V/x)/iEnewi. The

geometric relaxation algorithm, therefore, consists of the
iEi11i 5 iEii 6 iEii n.e.i, (22)steps of starting with a poor approximation of the electric

field intensity (or potential gradient) on the boundary,
where n.e.i is the normalized error at the ith iteration step.carrying the geometric solution of Laplace’s equation in-
(Note that n.e.i R 0 as the solution proceeds, since theside the domain, and then improving the original estima-
error is being reduced.) Thus,tion of gradient and repeating the geometric solution pro-

cedure.
The manner by which the intensity of the electric field ai 5 1 6 n.e.i. (23)

on the boundary can be modified at each new iteration
will be now explained, together with the conditions neces- Let iEii at any iteration step be less than iEexacti, where
sary for convergence of the algorithm. iEexacti is the exact value of the field intensity, so the sign

in Eq. (23) is positive. Now, the normalized error after the
2.3.2. Conditions of Convergence first iteration will be given by

LEMMA. The number of iterations required for conver-
gence of the geometric relaxation algorithm is given by

n.e.2 5
iEexacti 2 iE2i

iEexacti
5 1 2

a1iE1i
iEexacti

. (24)

i 5
log[log n.e.i/log n.e.1]

log 2
,

But

where n.e.1 is the maximum normalized error in the initial
Neumann conditions on the boundary of the problem, and n.e.1 5

iEexacti 2 iE1i
iEexacti

5 1 2
iE1i

iEexacti
; (25)

n.e.i is the normalized error after the ith iteration.

Remark 2.2. The value of the normalized error at any
therefore,point on the boundary ranges from 0 to 1; i.e., 0 , n.e.1 ,

1 along the boundary. If such normalized error is equal to
n.e.2 5 1 2 a1(1 2 n.e.1)1 at any point on the boundary, the initial value of potential

gradient at that point is in error by an amount equal to 5 1 2 (1 1 n.e.1)(1 2 n.e.1) (26)
100% of the actual value. In other words, the normalized

5 (n.e.1)2.error is the ratio of the absolute error over the exact value.
After i iterations, the normalized error at the same point

Similarly, it can be shown thatis reduced to n.e.i. If, for instance, n.e.i 5 1027, and the
exact value of gradient equals 100, for example, then the

n.e.3 5 (n.e.2)2 5 (n.e.1)4,solution has converged to five digits. But if the exact value
n.e.4 5 (n.e.1)8, (27)is 10, then the solution has converged to six digits, etc.

etc.,
Proof. In implementing the geometric relaxation algo-

rithm, we must modify the value of the field intensity iE i
where n.e.i is the normalized error before the ith iterationon the boundary at the starting point of each field line
step. Therefore,before carrying a new iteration inside the domain. Let, at

a given point, the value of iE i be modified by a factor ai

n.e.i11 5 (n.e.1)2i
. (28)at each new iteration, i.e.,
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FIG. 6. The geometric solution of the analytic function V 5 X 2 2
FIG. 5. A plot of the number of iterations (i) versus the normalized Y 2, which satisfies Laplace’s equation.

error (n.e.1).

a modest initial guess on the boundary, the number of
iterations i will be less than 5. With such a small numberBy taking the logarithm twice for both sides of the equa-
of iterations, therefore, the method essentially requires antion, it can be easily verified that
O(M) computations. It should be noted, of course, that
such a result is independent of the number of points N

i 5
log[log n.e.i/log n.e.1]

log 2
, (29) initially taken to initialize the boundary conditions (this

will be further clarified in Section 3).
We have tested a variety of problems and found that bywhere n.e.i has been substituted for n.e.i11 for simplicity.

taking a small number of points on the boundary, e.g.,(Note that n.e.i represents the normalized error after i
32–64 points, and using a standard integral-equationiteration steps have been completed.)
solver, the accuracy of the estimated potential gradient

A plot of the function i of Eq. (29) is shown in Fig. 5 along the boundary is much higher than 20% and is gener-
for n.e.i 5 1027 (constant) and for 0 # n.e.1 # 1. ally higher than 90% (this corresponds to n.e.1 5 0.1). Such

It is clear that an infinite number of iterations is required results also seem to agree with other results published
for convergence when the initial normalized error n.e.1 independently in several references [3, 4, 17].
approaches unity. However, it can also be seen that the

3. SOLUTION EXAMPLES AND PRACTICALfunction of Eq. (29) is very well behaved for values of
CONSIDERATIONSerror up to 80%. This suggests that if a modest initial guess

of only 20% accuracy is used to initialize the geometric
In this section we shall give solution examples of somerelaxation algorithm, the operation count of the algorithm

classical boundary value problems, using both Dirichletis expected to be very low. Of course, such modest guess
and Neumann boundary conditions, or the Dirichlet condi-can be obtained with a standard integral-equation solver
tions only, and we shall describe some practical and physi-and with a small number of points being taken on the
cal considerations that should be observed when theboundary.
method is applied.

Remark 2.3. The infinite number of iterations required
3.1. Problems Subject to Both Dirichlet and Neumannfor convergence when the initial normalized error ap-

Boundary Conditionsproaches unity is a result which will be further understood
from the description of the algorithm given in Appendix C, A program was written to test the basic geometric
as a direct consequence of the dependence of the geometric method for solving Laplace’s equation, as described in
method on a sensitive point on the boundary called the Section 2.1. The inputs to the program are the distributions
‘‘inflection’’ point, at which the sign of the normal potential of the potential and the normal potential gradient along
gradient flips from positive to negative or vice-versa. the boundary of the problem.

Having obtained the above result, we shall now ask the
3.1.1. Interior Problem

following question: what is the total computational effort
of the proposed geometric relaxation algorithm? As we Consider, first, a potential function which satisfies La-

place’s equation, and which can be calculated analytically.have demonstrated in Section 2.1, the basic geometric
method takes an O(M) computations to obtain the solution An example of such a function is V 5 X 2 2 Y 2. For this

function, the potential V 5 11 at X 5 61,at M points inside the domain. When the method is re-
peated i times, the total computational effort is of O(i ? M). Y 5 0, and V 5 21 at X 5 0, Y 5 61, as can be seen in

Fig. 6. Further, V 5 0 at the edges of the square region,However, the graph of Fig. 5 above predicts that, with
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TABLE I

No. of Geometric No. of
points Initialization relaxation iterations Total time

32 7.1 41.5 5 48.6
40 10.5 31.2 4 41.7
48 16.9 25.1 3 42.0
64 27.6 25.3 3 52.9

Note. Times are in seconds.FIG. 7. The geometric solution of an exterior potential problem.

which suggests the presence of two intersecting, planar
In this problem, a metallic sphere is charged to a potentialequipotentials at the center. The program was made adap-
of 100 V and raised to a certain distance above the ground,tive according to the criteria described in Section 2.2; i.e.,
which is held at a potential of 0 V. By knowledge of theit computes the value of iE i/2K at all points on each new
boundary conditions at the sphere, the program traced theequipotential curve and selects the minimum. Such a value
equipotentials shown in the figure. For this problem, theis then divided by some constant and taken as the step
Neumann conditions were first obtained by using a stan-size DV for computing the distances Ds along the flux lines.
dard integral-equation solver.The program used the improved, second-order approxima-

tion of Ds, given by Eq. (17), instead of the first-order
3.2. Problems Subject to Dirichlet Conditions Onlyapproximation. The result is shown in Fig. 6.

It should be noted that each equipotential curve in the An algorithm that implements the geometric solution
solution is actually a group of cubic splines, each given by by relaxation, as described in Section 2.3 and more fully
Eq. (32) (Appendix B), and each defined between two in Appendix C, was written and tested. The test cases
points on the curve. shown below are again fully described in Appendix C.

In this particular example, the accuracy of the computed
equipotentials can be found as follows: at a given point 3.2.1. Interior Problem
X,Y on an equipotential curve, the exact value of potential

EXAMPLE 1. Consider again the problem V 5 X2 2 Y2is V 5 X2 2 Y2. However, the computed value of the
shown in Fig. 6 above. For this problem, a classical O(N 2)potential for such a curve will be different. The error will
integral-equation solver has been used to obtain the initialthen be the difference between the exact and computed
guess of potential gradient; and the number of points usedvalues of potential. The maximum error within the domain
on the boundary varied from 32 to 64 points (8 to 16 pointsof the problem can then be found. It was found that the
on each side of the square). At 32 points, the classicalerror, in fact, decreases when the step size DV is made
solver took 7.1 s to obtain the boundary conditions, andmuch smaller than the minimum value of iE i/2K on the
then the geometric relaxation algorithm took 41.5 s andcurve, and it increases when the step size increases. By
five iterations to converge to seven digits (i.e., to reduceproperly selecting DV, it was found that the solution can
the absolute error to 1027). At 64 points, the classical solverbe accurate to seven digits or more (i.e., the magnitude of
took 27.6 s to execute, and then the geometric relaxationthe error can be less than 1027). Note that such accuracy
algorithm took 25.3 s and three iterations to converge tois a feature of the method of interpolation by cubic splines
seven digits. These results are summarized in Table I.and may not be generally obtainable by other interpolation

It should be noted from the table that the total executionschemes (see Ref. [8]).
time reached a minimum of 41.7 s at 40 points. For higher

Remark 3.1. A SUN Sparcstation 2 was used to solve and lower selections of the number of points on the bound-
the examples presented in this section. To calculate the ary, the execution time was higher. Therefore, by initializ-
potential accurately to two digits at all points inside the ing the boundary conditions at 40 points on the boundary,
domain, the execution time on the CPU was negligible. the total execution time for this problem was minimized.
However, the execution time was found to grow linearly Of course, such optimal selection of the number of points
for higher accuracies, confirming that the method is an depends on the problem and cannot be determined with
O(M) method. certainty.

The total number of points inside the domain, M, at
3.1.2. Exterior Problem

which the solution was computed in this problem was about
62,000 points. (Such a large number of points was necessaryFigure 7 shows the solution obtained by the program

for another classical example: the Van-de-Graaf generator. to obtain the accuracy of 1027).
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Remark 3.2. It should be noted here that a number of
points on the boundary much higher than the initial num-
ber N is actually taken as the geometric solution proceeds.
(Of course, we cannot obtain an accuracy of 1027 by using
32 points on the boundary without violating the sampling
theorem!). In practice, as the algorithm traces equipoten-
tials inside the domain, it may require to select a point on
the boundary at which the potential V corresponds to a
newly computed equipotential curve (see Fig. 4), but such
a point may not belong to the set of discrete points already
available on the boundary. In such case, the potential gradi-
ent at that point on the boundary is obtained by linearly
interpolating between the two discrete points surrounding
that point (more in Appendix C). Of course, as outlined
above, the geometric relaxation algorithm can quickly im-
prove the estimation of potential gradient within few itera-

FIG. 8. Interior Dirichlet problem.
tions. Clearly, this scheme will always require an O(M)
operations regardless of the number of points taken on
the boundary.

3.2.2. Exterior Problem
After the results described above were obtained, the

Consider the problem of the metallic sphere raised aboveclassical integral-equation solver was then applied to the
the ground shown in Fig. 7. For this problem, the potentialproblem. To reduce the error to 1027, the program took
along the field lines which end on the flat surface tends toabout 2000 points on the boundary and 32 h of CPU time!
a constant (here V 5 0 at the surface), while the potentialFinally, the faster Rokhlin algorithm was applied to this
along the lines ending at infinity (the far field potential)problem. The procedure which computes the Neumann
obeys the logarithmic decay rule.conditions on the boundary was considerably faster than

Note that in this problem, points on both the plane andin the classical case; however, the timing for the procedure
the sphere must be taken in order to build the interactionwhich calculates the potential inside the domain (at 62,000
list which is necessary for calculating the initial value ofpoints) was approximately 1.2 h. Such timing was expected,
potential gradient on the points of the sphere. However,since, as outlined earlier, such a procedure requires an
when the geometric relaxation is applied, the solution pro-O(M ? N) operations, where M 5 62,000 and N 5 2000 in
ceeds at the surface of the sphere only. The far-field andthis example. Comparing with the worst execution time of
the near-field conditions are then applied at each field41.5 s, taken by the geometric relaxation algorithm, we see
line separately.that a speedup factor of at least 100 can be obtained with

the geometric method.
3.3. Practical and Physical Considerations

From the examples shown in Figs. 6 and 8 above, aEXAMPLE 2. One of the important applications in bio-
medical research is the tracing of potential fields inside a remarkable characteristic of the geometric solution will be

apparent; as observed, the algorithm cannot proceed inhuman heart which is being exposed to a defibrillation
shock. In this application, recording electrodes are placed regions where very high curvatures exist. As can be seen

in Fig. 6, the program could not trace equipotentials nearat several locations on the surface of the heart, and the
potential at these locations is measured. (See Ref. [6].) the center of the square where K 5 y. In Fig. 8, K reaches

infinity at three different locations inside the domain, andConventional Laplace solvers are then used to trace the
equipotential surfaces inside the heart. the program cannot proceed near such locations. This

strange phenomenon has also been observed in severalWhile this problem is a complex three-dimensional prob-
lem, Fig. 8 shows a typical two-dimensional representation other test cases. In practice, as K R y (a point of singular-

ity), the selected step size DV R 0 in order to minimizeof the right posterolateral view of the heart. The figure
also shows an arbitrary distribution of potentials on the the error, according to the criteria outlined in Section 2.2

above. Accordingly, the computed distance Ds R 0.boundary (in volts), and the equipotentials obtained by the
geometric relaxation algorithm for the given distribution of This shortcoming, however, is not a deficiency of the

geometric method. By observing that Thomson’s formulapotentials. The number of points inside the domain at
which the solution was computed in this problem was about is a first-order differential equation, it can be easily verified

that the solution of such a formula is iE i 5 iE0i exp(2Ks),10,000 points.
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where iE0i is the field intensity at the equipotential surface from the analysis of Section 2 and from the experimental
evidence presented, the method is especially suited forand s is the distance along the field line. Now, by observing

that iE i 5 uV/su, it can be seen that when K R y, uV/ mapping the potential field throughout the entire domain
of the problem and promises to be significantly faster thansu R 0; i.e., in the neighborhood of K 5 y the potential

remains essentially constant. This means that the differ- conventional methods which normally require an exhaus-
tive amount of computations to achieve such a task. Asence in potential between two successive equipotential

curves in such a region can be practically neglected. In was shown, the method requires an O(N 2) 1 O(i ? M) com-
putations, where N is the number of points used to obtainpractice, computer output showed that the program may

stop at an equipotential curve at which the potential is, the initial Neumann conditions on the boundary, i is the
number of iterations, and M is the number of points insidefor example, V 5 1024 V, while the potential at the singular

point is V 5 0 V. For the example of Fig. 6, this conclusion the domain at which the solution is computed. With i being
a very small number, N being generally small, and withmeans that the potential throughout the blank region at

the center of the square is nearly constant and equal to 0. M being substantially large, the method essentially then
requires an O(M) computations and is therefore more ad-Now, we shall raise the following question: if the geomet-

ric solution cannot proceed in regions where K R y, what vantageous than previous methods which require an
O(N ? M) computations, where both N and M are large.physical implications arise from this phenomenon and how

can the program be practically implemented? In practice, A different and important implementation of the
method would be to utilize the Rokhlin or other fast solversif the adaptive algorithm cannot proceed past a particular

equipotential surface, this is due to the quantity iE i/2K to obtain the Neumann conditions at a large number of
points N on the boundary. In such a case the relaxationbeing very small at one or more points on that surface. As

discussed, the smaller this quantity becomes at any point, algorithm described in Section 2.3 would not be necessary
and the geometric method can be used as a tool for quicklythe higher the error in the Taylor expansion in the neigh-

borhood of that point and, hence, the smaller the displace- mapping the field inside the domain of the problem. In such
an implementation the total computational effort would bement Ds which must be taken in order to suppress the

error terms. This is one important physical aspect in the strictly O(N) 1 O(M), which is still more advantageous
than the O(N ? M) effort required by the older techniques.solution of Laplace’s equation which appears clearly in the

present method, but which does not show in any other Of course, the implementation is a matter of choice and
is to be left to the preference of the user.numerical technique. Apparently, this relationship be-

tween the error and the curvature of the equipotentials While fundamentally different from other presently
known methods, we have shown that this method has itswas unknown to other researchers in the field of numeri-

cal analysis. own merit in bringing large-scale calculations in complex
domains within the limited computing power of desktopRemark 3.3. It can be easily observed that, in general,
workstations and personal computers.when potential problems are solved numerically, the error

Finally, while the analysis of this paper presents thealways increases in the neighborhood of K R y, regardless
geometric solution of Laplace’s equation in two dimen-of the numerical method being used. This can be observed
sions, there is a straightforward extension to the methodfrom Thomson’s formula (Eq. (8)), and by observing that
in three dimensions, which we will report at a later date.iE i/s 5 22V/s2; then if K R y, 2V/s2 R y. It can

also be verified that the higher derivatives of V tend to
APPENDIX Ainfinity. But since any numerical method for solving La-

place’s equation must neglect some high-order terms in LEMMA. A closed equipotential surface cannot exist
the Taylor expansion of the potential V at any point, it within a region where Laplace’s equation holds.
can be seen that the error always increases in regions where

Proof. At every point in space where Laplace’s equa-K R y regardless of the numerical method being used.
tion holds, div D 5 0, where D 5 «E is the electric fluxThe practical implementation of the geometric solution
density.algorithm is described in detail in Appendix C.

Consider a region where Laplace’s equation holds. Con-
4. CONCLUSION sider a closed surface within that region. By applying the

divergence theorem [11] to the volume of space enclosed
In this paper we have presented a new method for solv- by that surface, we have

ing Laplace’s equation in exterior domains and in interior
domains with complicated boundaries. This method will EEE

v
div D ? dv 5 0 5 EE

S
D ? dS, (30)be regarded by many experts in numerical analysis as a

strange method, since it is fundamentally different from all
the previously known techniques. However, as is apparent where S denotes the area of the closed surface. But we have
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E 5 2grad V Therefore, the curvature at the support points in an equipo-
tential curve can be easily computed from

5 2
V
n

n̂,

Ki 5
Mi

(1 1 [ f 9(xi)]2)3/2 , (35)

where n̂ is a unit vector in the direction of the flux line.
Therefore, assuming a uniform dielectric constant, where the moments are first computed from the tri-diago-

nal system of equations [8]

EE
S

D ? dS 5 2« EE
S

V
n

n̂ ? dS. (31)
M0 a0

M1 a1
If, and only if, the closed surface is an equipotential

+ +surface, the electric flux will be normal to the surface every- 1
2 l0 0

e1 2 l1

e2 2 l2

5 5 5

en 2 ln

0 en11 2

21 251 2 ,
where, and n̂ ? dS represents the dot product of a unit vector
with itself times the area of the surface element dS; i.e.,
n̂ ? dS 5 dS for every element on the surface.

Mn11 an11Further, since equipotential surfaces cannot intersect,
then, in the direction of the field lines, the potential V (36)
must be clearly decreasing outwardly everywhere on the
surface; i.e., V/n has a negative value for all elements where
on the surface (except, of course, the trivial case where V
is constant; i.e., within a uniform conductor). Therefore,
we conclude that the integral of the RHS of Eq. (31) cannot li 5

hi11

hi 1 hi11be equal to 0, and, hence, Eq. (31) contradicts Eq. (30).
ei 5 1 2 li

APPENDIX B
ai 5

6
hi 1 hi11

Syi11 2 yi

hi11
2

yi 2 yi21

hi
D

Given an interval x [ [a, b], a cubic spline function

for i 5 1, ..., n, withf(x) 5 Ai 1 Bi(x 2 xi) 1 Ci(x 2 xi)2 1 Di(x 2 xi)3 (32)

defined over a sub-interval x [ [xi, xi11] (where xi denotes l0 5 1, a0 5
6
h1
Sy1 2 y0

h1
2 y90D

the support points, i 5 0, ..., n 1 1) is completely deter-
mined in terms of its second derivatives (or moments) at
the support points by [8] en11 5 1, an11 5

6
hn11

Sy9n11 2
yn11 2 yn

hn11
D .

Ai 5 yi
For an equipotential curve, a difficulty arises at the two
outermost points (the points located on the boundary),Bi 5

yi11 2 yi

hi11
2

2Mi 1 Mi11

6
hi11

(33)
since the calculation of a0, an11 requires the first derivative
y9(x), which is unknown at those points. However, a simpli-

Ci 5
Mi

2
fication can be made by observing a simple fact: if we
assume that the second derivatives M0, Mn11 at the end
points of the curve are equal to zero, such assumption will

Di 5
Mi11 2 Mi

6hi11
, not change the value of the first derivative at those points.

In other words, taking M0 5 Mn11 5 0 simply assumes that
the curve is ‘‘flat’’ at the end points.where Mi is the moment at x 5 xi and hi11 5 xi11 2 xi,

By taking M0 5 Mn11 5 0, the tri-diagonal system isi 5 0, ..., n, is the partition size.
reduced to n equations. Such a system of equations canFurther,
be solved in a straightforward fashion by Gaussian elimina-
tion [8], which results in a considerable saving in computa-
tion and storage (it is clear that only one array is neededf 9(xi) 5

yi11 2 yi

hi11
2 hi11 SMi11

6
1

Mi

3 D . (34)
to store the elements of the matrix, since ei 5 1 2 li).
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APPENDIX C: PRACTICAL IMPLEMENTATION OF THE

GEOMETRIC RELAXATION ALGORITHM

In this section a description will be given for an algorithm
that implements the geometric solution of Laplace’s equa-
tion inside irregular domains. The algorithm is simple and
is based directly on the basic equipotential construction
method outlined in Section 2.1. The level of detail given
here is such that an average physicist or engineer can
clearly follow the description. Although the description
may be lengthy, the algorithm is in fact quite compact and
has been implemented in a few pages of C code. A pseudo-
code listing of the equipotential tracing function of Section
2.1 will be given at the end of the Appendix; followed
by a comment on the applicability of the algorithm to
exterior domains.

Before describing the algorithm itself, an important no-
tice about the algorithm is in order first. The implementa-
tion of this algorithm relies heavily on the technique of

FIG. C1. Definition of various types of entities on the boundary
‘‘matching’’ values of potential at different points on the or inside the domain of the problem: Start points, start equipotentials,
boundary and inside the domain of the problem, that is, inflection points, and start regions.
testing if two or more points have the same potential value.
To implement this matching process correctly on real float-
ing-point numbers, we shall define here a maximum error

Each start point must be surrounded by two inflection
bound « for the algorithm. This error bound is user-defined

points having exactly the same potential (except in the
and represents the maximum error sought in the solution.

trivial case, where the entire boundary is an equipotential,
For example, if the solution must be obtained with no less

as in Fig. 7). The potential of an inflection point always
than 5-digit accuracy, then « is set to be 1025; but if the

corresponds to and is equal to the potential of a singular
solution is desired with only a 2-digit accuracy, then « 5

point inside the domain, as shown in Fig. C1c.
10-2. The matching of the potential at different points,

(d) Start region. It is a region inside the domain of thetherefore, is intended to detect whether two or more points
problem surrounding each start point or equipotential. Thehave the same value of potential within the specified error
last equipotential or ‘‘envelope’’ of that region is locatedbound. This general rule will apply whenever statements
at the inflection points. Such region is shown in Fig. C1c.like ‘‘two points have the same potential,’’ or ‘‘V is the

same’’ appear in the following discussion. (e) Intermediate region. It is a region inside the domain
of the problem which is not a start region. Each boundaryThe description given below will be aided by practical

examples. The problems of Figs. 6 and 8 shown previously value problem may contain zero or more intermediate
regions. Intermediate regions exist when the domain ofwill be used as examples here.
the problem contains more than one singular point. For
illustration, the problem of Fig. 8 has eight start regionsC.1. Definition of Terminology
and two intermediate regions, while the problem of Fig. 6

(a) Start point. A start point Ps is a point on the bound- has four start regions and no intermediate regions.
ary at which the potential V is a local maximum or mini-

The definitions listed above will become more apparentmum; i.e., the potential either decreases monotonically or
in the following discussion.increases monotonically in either direction on the bound-

ary around Ps (see Fig. C1a).
C.2. Description of the Algorithm

(b) Start equipotential. A start equipotential is a group
The geometric relaxation algorithm consists of the fol-of adjacent points on the boundary at which the potential

lowing three major phases:V is unique and at which V is a local maximum or minimum
(see Fig. C1b).

Phase A. Initialization of the Boundary Conditions
(c) Inflection point. It is the nearest point on the bound-

ary to a start point or equipotential at which the sign of As explained in Section 2.3, the classical boundary-ele-
ment method is typically used to obtain the initial Neu-the normal potential gradient dV/dn is reversed (from posi-

tive to negative or vice versa, see Fig. C1c). mann conditions on the boundary. Let N be the highest
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number of points which can be given on the boundary and the direction cosines of the electric field vector with respect
to the global coordinates X, Y of the problem (note thatat which the potential V can be defined. For low initial

accuracy, solve for the Neumann conditions by using a we have used dx , dy to denote the direction cosines with
respect to the local coordinates x, y on the boundary; seesubset of points N 9, N 9 , N, N 9 ! N. For higher accuracy,

N 9 must be higher, and the highest accuracy is eventually Fig. 2). Those direction cosines with respect to global coor-
dinates will be denoted dX, dY and will be obtained fromobtained when N 9 R N. The boundary-element method

is explained in detail in Ref. [17]. the following two formulas:

Phase B. Preprocessing the Boundary
dXi 5 dxi

p
(Xi11 2 Xi21)

Disti21,i11
2 dyi

p
(Yi11 2 Yi21)

Disti21,i11
,

(37)
This phase is concerned with locating the various entities

on the boundary defined earlier, such as start points, in-
dYi 5 dxi

p
(Yi11 2 Yi21)

Disti21,i11
1 dyi

p
(Xi11 2 Xi21)

Disti21,i11
.flection points, etc., and consists of the following five steps:

1. Considering the entire set of N points initially given
on the boundary, scan the boundary to locate the start The global direction cosines will be required later for con-
points and the start equipotentials. (Processing is simplified structing the equipotential curves progressively inside the
by giving each point on the boundary a unique ID number, domain as outlined in Section 2.1.
from 1 to N, and by storing the coordinates of the boundary Clearly, this step will generate the following 11 arrays:
points and the values of potential at these points in three V/n, V/x, iE i, dx , dy, iE i/x, dx/x, iE i/s, dX, dY,
different arrays: X, Y, and V. The stored values for any and Disti21,i11. (Note that the notation V/n for the nor-
point can then be accessed immediately by using the ID mal gradient will be used here instead of the notation V/
or sequential number of that point). As start points and y used in Section 2.1).
equipotentials are being detected on the boundary, three 3. Using the array V/n, scan the values of the normal
arrays will be required: one array for recording the ID potential gradient at the subset of points N 9 in order to
numbers of the start points found (for a start equipotential, estimate the location of the inflection points on the bound-
only the first and last points on the equipotential will be ary. This can be performed in the following manner (see
recorded); the second array for indicating the type of each Fig. C1c for details): if the sign of the normal potential
entity in the first array (i.e., whether the identified point gradient (sgn(dV/dn)) at a particular point P1 in the subset
is a stand-alone point or part of an equipotential); and is negative, while sgn(dV/dn) at the following point P2 is
the third array for indicating whether the entity is a local positive, or vice-versa, then an inflection point exist on the
maximum or a local minimum. (Clearly, such task as identi- boundary at an undetermined location between points P1
fying the type of a point can be simply accomplished by and P2. Clearly, an inflection point is a point at which the
using two different digits or flags). sign of the normal potential gradient flips and which cannot

be determined with high precision, since the resolution2. (a) For each of the boundary points 1 to N, excluding
the subset of points N 9 identified in Phase A, calculate (N 9) used to obtain the Neumann conditions on the bound-

ary is limited. The locations of the two points P1 and P2an estimated value for the normal potential gradient by
linearly interpolating along the segment of the boundary on the boundary are then recorded. We shall hereinafter

refer to such two points as the two ‘‘characteristic’’ pointscontaining the point, between the pair of values at the two
points of the subset N 9 which surround that point. (By which indicate the presence of an inflection point on the

boundary. A list of characteristic points is then created,setting an array of N values for the normal gradient on
the boundary, of which only a subset N 9 is known, this such as P1, P2, P3, P4, etc., in the order of their respective

locations on the boundary. Note that each start point ortask is simply the task of filling in for the unknown values
by using linear interpolation). (b) For each of the boundary equipotential on the boundary must be surrounded by two

inflection points, as shown in Fig. C1c, and as we indicatedpoints 1 to N, calculate the tangential potential gradient
V/x, as Vi/x 5 (Vi11 2 Vi21)/Disti21,i11, where Disti21,i11 previously. The opposite, however, is not true; i.e., it is

possible to have two or more inflection points occurringis the physical distance between points i 2 1 and i 1 1 on
the boundary. Calculate then the electric field intensity successively on the boundary with no start points or equi-

potentials lying therebetween (i.e., in Fig. C1c, it is notiE i and the direction cosines dx , dy by using the set of
formulas (3) in Section 2.1. (c) For each of the boundary always necessary to find a start point Ps lying between two

inflection points as shown). The reasons behind such rulespoints 1 to N, calculate the two quantities iE i/x, dx/
x, as the ratio of the difference over the physical distance of occurrence will be understood and clarified in the follow-

ing discussion.between points i 2 1 and i 1 1, as explained above. Finally,
calculate the quantity iE i/s by using Eq. (11) in Section This step clearly requires only one array for recording

the ID numbers of the characteristic points found.2.1. (d) For each of the boundary points 1 to N, calculate
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Let us now see how steps 1–3 above will be applied to region A; 11.0 (point), which defines region B; 12.0
(point), which defines region C; 21.0 (point), which definesthe examples of Figs. 6 and 8. In Fig. C2a, the preprocessing

routine located four start points on the boundary: 21, 11, region D; 0.0 (equipotential), which defines region E; 21.0
(point), which defines region F; 12.0 (point), which defines21, 11. Each of the start points defines a start region

inside the domain. Respectively, these regions are: A, B, region G; and 0.0 (point), which defines region H. The
characteristic points located by the program, P1 to P24, areC, and D. These regions are at this stage hypothetical

regions, shown here only for clarity. The program also also shown in the figure. In this example, some of the
inflection points found are shared between start points orlocated eight characteristic points on the boundary, P1 to

P8, each pair of characteristic points being around a corner equipotentials, such as the inflection points defined by pairs
P3, P4 and P5, P6; while some occur sequentially within apoint at which the potential is 0 V, as shown (clearly, these

corner points are the precise locations of the inflection portion of the boundary that is free of start points or
equipotentials, such as the sequence defined by pairs P7,points). Note that in this particular example each start

point found is surrounded by two inflection points and vice P8; P9, P10; and P11, P12. We shall hereinafter refer to such
points as the ‘‘free’’ inflection points (the occurrence ofversa; that is, each inflection point is effectively ‘‘shared’’

between two different start points. The results obtained such points on the boundary indicate the presence of inter-
mediate regions inside the domain).for the example of Fig. 8 are shown in Fig. C2b. As shown,

the program located the following start points, anticlock-
4. The objective of this step is to determine those char-wise from the bottom: 14.0 (equipotential), which defines

acteristic points which are shared between two different
start points and finally form a ‘‘chain’’ of start points and
equipotentials, such that each pair of characteristic points
form a ‘‘link’’ between two different start points or equipo-
tentials in the chain. In Fig. C2b, the pair of characteristic
points P3, P4 located by the program is shared between
start equipotential 14.0 and start point 11.0. The start
point 11.0 is in turn linked to start point 12.0 by the pair
P5, P6. On the other hand, pairs P1, P2 and P7, P8 are
not shared between start points, as indicated above. It is
therefore apparent that the sequence of start points 14.0,
11.0, and 12.0, and hence the corresponding regions A,
B, and C, form one chain. Similarly, start points 21.0, 0,
and 21.0 form another chain. Finally, start points 12.0
and 0.0 form a third chain (those chains may also be called
clusters). The task of identifying those chains or clusters
on the boundary is a straightforward task; by comparing
the ID numbers of the start points with the ID numbers
of the characteristic points (from the two arrays recorded
previously), it is possible to determine those pairs of char-
acteristic points which occur between start points or equip-
otentials (shared), and those which appear in sequence
with no start points or equipotentials occurring therebe-
tween (free). A group of start points or equipotentials
which are found to be linked in this manner are then
referred to as Group 1, Group 2, etc. To completely identify
each group, three arrays will be required: two for the start
points and equipotentials in that group (which must be
arranged as explained in Step 1 above) and one for identi-
fying the locations of the links, or the characteristic points,
on the boundary. In more detail, the task is to be carried
as follows: between each two consecutive start points Ps1

and Ps2 on the boundary, scan the list of characteristic
FIG. C2. The start points and the inflection points (indicated by the points to determine if any pairs of characteristic points liepresence of pairs of characteristic points) found by the preprocessing

there between. If only one pair of such points is found,routine for the examples of Figs. 6 and 8 shown previously. Each start
point or equipotential defines a start region inside the domain. then a new group has been identified, and three new arrays
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must be started as indicated above to identify the members
of that group. If more than one pair, however, is found
lying therebetween, then all the ID numbers of such char-
acteristic points will be entered sequentially into one sepa-
rate array listing the free inflection points on the boundary.
If a following consecutive start point (or equipotential) Ps3

is also found to be linked to Ps2 as described above, that
point or equipotential is added to the group, etc., until
more than one pair of characteristic points is located, which
indicates the end of that group.

For example, in Fig. C2b, the characteristic points found
to be shared in the group A-B-C are P3, P4, P5, P6. The
ID numbers of those points will then be entered into the
proper array for that group. In Fig. C2a, all the pairs of
characteristic points found are shared between start points
as shown; hence, all the start points in this example form
one group. It is very important to note here that a start
point or equipotential which is not linked to any other FIG. C3. The three singular points inside the domain of the problem
start point or equipotential will form a group by itself, and of Fig. 8. Each singular point is surrounded by a ‘‘domain of influence,’’

or a region where the potential is constant (within an error bound oftherefore such a group will be composed of only one
6«) throughout such a region. As shown, each singular point has fourmember.
inflection points on the boundary. The potentials of these singular points

5. The last step in the preprocessing routine is to calcu- are: 11.43, 10.85, and 20.11 V.
late an inflection potential for each group of start points
found in step 4. As can be easily seen in Fig. C2a, all four
regions A, B, C, and D form one group which converges

When the solution converged inside the domain, these
at a potential of 0 V, which is actually the inflection poten-

potentials were found to be: 11.43, 10.85, and 20.11 V,
tial for each of the four regions separately. Now the pur-

as shown in the figure.
pose of ‘‘grouping’’ regions as explained in step 4 above

To calculate a unique inflection potential Vinf for each
is clear: each group of start points on the boundary which

group of start points found in step 4, we simply average
are linked in the manner described above must all have

the potentials of all the characteristic points listed for that
one, and precisely one, inflection potential (it is of course

group. For example, in Fig. C2b, the inflection potential
a simple matter to observe that if, for example, start points

for the group in the lower part of the domain (A-B-C) will
1 and 2 share an inflection potential V1 and start points 2

be obtained by adding the values of the potentials at points
and 3 share an inflection potential V2, while start point 2

P1 through P8, and dividing by eight. A unique Vinf will
must have only one value for the inflection potential, then

then be recorded for each group obtained. Note that such
V1 must be equal to V2). Therefore, each group of start

value of Vinf is only a first estimate and will be refined later
points and equipotentials which are linked by inflection

by relaxation.
points as described above must all share one inflection
potential; further, they must develop start regions which Steps 1–5 above describe the preprocessing routine. As

can be observed, steps 1 and 2 will require an O(N) work,all terminate at a singular point inside the domain having
a potential equal to that inflection potential. This fact is where N is the number of points on the boundary. Steps

3, 4, and 5, combined, take a negligible amount of computa-very apparent in the examples of Figs. 6 and 8. For illustra-
tion, the singular points inside the domain of Fig. 8 are tions, since the tasks performed in those steps will require

the handling of few arrays, composed of few points each.shown in Fig. C3 below. As shown, there are three singular
points in this example (compare with Fig. C2b and identify We can therefore conclude that this preprocessing proce-

dure requires an O(N) effort. Typically, the number ofthe corresponding start points and start regions for each
singular point). As can be observed from the figure, each points N specified on the boundary is large (1000 or more);

however, in comparison with the number of points M insidesingular point is surrounded by a ‘‘domain of influence,’’
or a region where the potential is constant. These regions the domain at which the solution is to be computed, which

is a quite substantial number (typically, tens of thousandsof constant potential are the black regions shown in the
figure. The potential throughout each of those three re- of points), we see that the overhead of the preprocessing

task is still negligible by comparison with the main task ofgions is constant and is equal to the potential of the singular
point at the middle to the region, which is also the potential solving the problem inside the domain (Phase C, described

below). As we demonstrated in the example of Sectionof the corresponding inflection points on the boundary.
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3.2.1, three iterations of the geometric relaxation algorithm This is a simple technique to monitor the origin of each
took 25.3 s, which is now to be understood as an effort of support point obtained inside the domain.
O(N) 1 O(3.M), where N 5 2000 and M 5 62,000. How- Further details are given in the pseudo-code listing of the
ever, when the classical O(N ? M) method was applied, the equipotential tracing function at the end of the appendix.
timing was 1.2 h. Clearly, the difference is substantial. 2. Determining the ‘‘envelope’’ for each start region.

For each start region considered, the program monitors
Phase C. Mapping of the Potential Field inside the

the value of the potential V on each new equipotential
Domain with Iterative Improvements of the

curve obtained inside the region. When it is determined
Neumann Conditions

that V has reached or passed the inflection potential Vinf

This is the main task which solves for the potential inside for that region, the tracing of equipotentials is stopped in
the domain, and is carried as follows. the region, and the last equipotential traced is considered

to be the envelope for that region. For that purpose, if the1. Tracing of equipotentials inside the start regions.
start point or equipotential in the region is a local maxi-Starting at each start point or equipotential separately,
mum, check if V # Vinf; otherwise check if V $ Vinf. Whenimplement the method described in Section 2.1 for tracing
such condition is met, the tracing in the region is stoppedthe equipotential curves progressively inside the domain.
as indicated. The potential V of the envelope is then re-If the potential at a particular equipotential curve inside
corded. In addition, the coordinates of the support pointsthe domain is V1, we must always select next two points
of the envelope, together with the ID numbers of theseon the boundary of a potential V2, such that the step size
points, are also recorded.DV 5 uV1 2 V2u is much smaller than the minimum ratio

Figures C2a and b show the envelopes of the start regionsiE i/2K on the curve; as discussed in Section 2.2. The next
for the two examples considered.equipotential curve will then be fitted through these two

points on the boundary. When the solution starts at the 3. Vestige elimination inside each group. In this step
preparation is made for: (a) tracing the intermediate re-start points and equipotentials, the curvature K at those

points is assumed to be unknown, as indicated in Section gions inside the domain and (b) improving the Neumann
conditions on the boundary at the origins of field lines, at2.1. However, since the quantity iE i/s has been calcu-

lated and since iE i/s 5 2KiE i (Thomson’s formula), those points on the boundary for which the trajectory of
the field line has ended.then K also can be calculated; hence, the critical ratio

iE i/2K can be found at the start points. (It is important First, the presence of intermediate regions is detected
by counting the number of groups found in step 4 of Phaseto observe that the curvature K may be a positive or a

negative number, depending on the sign of the quantity B above. If the number of groups is 1, there are no interme-
diate regions inside the domain; otherwise intermediateiE i/s; however, only the magnitude of K is taken in

the calculation of iE i/2K.) Note that when equipotential regions exist. As can be observed, there are no intermedi-
ate regions in the problem of Fig. 6. In the problem of Fig.curves are traced progressively inside the domain, the po-

tential will be decreasing if the start point is a local maxi- 8, two intermediate regions are present. Figure C4 below
shows those two regions clearly (the intermediate regionsmum and will be increasing if the start point is a local

minimum. In both cases, the incremental distance Ds along are the two hatched regions shown inside the domain).
The figure also shows the three distinct groups of startthe flux line will always be given by the ratio DV/iE i.

As the tracing of equipotentials progresses inside a start regions which were found in Phase B (numbered 1 to 3;
compare with Fig. C2b). The task now is to form a newregion, each support point on the most recently traced

equipotential in that region will be given a unique ID envelope for each group of start regions found, so that the
tracing of the intermediate regions can start at the newlynumber (from 1 to N) which corresponds to its origin or

‘‘root’’ on the boundary. All the support points obtained formed envelopes. A new group envelope is found by elimi-
nating parts, or ‘‘vestiges,’’ from the individual regionsalong the path or trajectory of a particular field line will

then have a unique number, which is the number of the composing each group. For instance, consider Fig. C5,
which shows an expanded view of the lower portion ofparent point on the boundary. For illustration, let a particu-

lar start point exist at location 253 on the boundary. The Fig. C2b. As explained, the group A-B-C shown in the
figure has the four characteristic points P3, P4 and P5, P6first equipotential traced inside the domain will then be

composed of a total of three points (refer to Fig. 4). Let shared between regions (as indicated previously, each pair
of characteristic points may be called a link). Note that inthe boundary points selected for this equipotential be

points 250 and 257. The point in the middle will then be the first few iterations the envelopes of neighboring regions
may overlap, as shown in the figure. Now, for each enve-given the number 253, which corresponds to the parent

point on the boundary. The support points for that particu- lope, select the point on the boundary which is closest to
the link and form a vestige (or array of points) from thatlar equipotential will then be numbered: 250, 253, and 257.
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the point next to Kmax and up to point 103) is then entered
into an array listing the support points of the new group
envelope, as shown in the figure. In a similar manner,
vestiges BA, BC, and CB are eliminated, and the remaining
points (those shown on the envelope of region C) are
entered into the final array representing the group enve-
lope. This new group envelope is shown in heavy black on
the outer boundaries of regions A and C. (Note that region
B will be effectively annihilated in this process).

This procedure must be repeated for every group of start
regions inside the domain, and an array must be provided
for each group envelope, listing the support points on that
envelope (the three group envelopes which resulted from
this process are shown clearly in Fig. C4). The eliminated
vestiges will be each held in a separate array, in prepara-
tion for the next step. (In fact, a trio of arrays is required

FIG. C4. The three distinct groups of start regions inside the domain for each curve: X coordinates, Y coordinates, and ID
of the problem of Fig. 8, with the envelope of each group shown as a

numbers).thick curve. The two hatched regions are the intermediate regions inside
Note that when this procedure is applied to the examplethe domain.

of Fig. C2a eight vestiges will be found (two for each start
region) and no group envelope will be created (the array
of the group envelope remains empty). It is of course possi-point and including all points on the envelope up to the
ble, by the prior knowledge that no intermediate regionssupport point which has the highest curvature Kmax. For
exist, to assert that no group envelope will be created.example, in Fig. C5, if the two boundary points of the

4. Potential averaging and feedback to improve the Neu-envelope of region A are points 103 and 250, while the
mann conditions. In this step the potentials of the enve-link points, that is, P3 and P4, are points 242 and 247, then
lopes of neighboring regions will be averaged and used asboundary point 250 is selected. A vestige is then formed
a feedback factor in Eq. (22) of Section 2.3.2 to improvefrom that point up to and including the point of Kmax shown
the estimation of the field intensity at the origins of theon the envelope. This vestige may be called vestige AB.

The portion of the envelope which was not selected (from field lines on the boundary.
Before we explain the averaging process, we will recall

that if the solution converges, all the start regions within
one particular group must converge to one, and precisely
one, inflection potential, which is yet unknown. Let us
consider again the case of Fig. C2b above. We indicated
in Phase B that the first estimation of Vinf for group A-B-
C was given by the average of the individual potentials at
points P1 through P8. We also indicated that, in the first
few iterations, the envelope of each start region will be
the equipotential that is obtained when Vinf is reached or
passed (whether the potential is increasing or decreasing
in that region). We must now point out that when the
solution converges, and the correct Vinf is reached, that
potential is never traversed by any envelope, but it is pre-
cisely the same (within an error bound of 6«), no matter
how many equipotentials can be traced successively in each
region. This will be immediately apparent by observingFIG. C5. Expanded view of the lower portion of Fig. C2b. The links,
that the inflection potential is the potential of a singularor pairs of characteristic points, P3, P4, and P5, P6 are shared among the

regions A, B, and C. For each link, two vestiges must be eliminated. For point inside the domain, as shown in Fig. C3. The distance
the pair P3, P4, vestiges AB and BA are eliminated; and for the pair P5, Ds between two successive equipotentials shrinks to zero
P6, vestiges BC and CB are eliminated. In this process, the envelope of in the neighborhood of a singular point (refer to Sectionregion B will be entirely annihilated, while the remaining portions of

3.3 for an explanation), and, therefore, the singular pointregions A and C’s envelopes are entered into the array representing the
new envelope of the group A-B-C. is never traversed by equipotentials. In Fig. C2a, each of
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the four regions converge to precisely 0 V, which is the vestige. Note that some of the parent points in regions A
and C will be corrected, while all the parent points inpotential of the singular point at the center of the square.

Now, for the first iteration (refer to Fig. C5), the poten- region B will be corrected in this procedure. The remaining
parent points in regions A and C clearly now belong totial of A’s envelope will be different from the potential of

B’s envelope, as we indicated previously. Since the two the new envelope of the group and will not be corrected
at this stage. In Fig. C2a, all the parent points on theenvelopes must converge to a unique value, the task now

is to locate the parent points (on the boundary) of vestiges boundary will be corrected at this stage, since no intermedi-
ate regions exist in this example. As explained in SectionAB and BA and correct the field intensities at those points.

Since each of the support points on vestiges AB and BA 2.3.1, the direction cosines dx , dy of the electric field at the
parent points must also be modified in addition to thehas a unique ID number which corresponds to its parent

point on the boundary, then the locations of those parent intensity. Further, the global direction cosines dX, dY must
be modified accordingly.points are immediately now at hand. The task now is this:

for vestige AB calculate a normalized error n.e., as n.e. 5 It is important to observe here that the geometric
method is essentially a finite-difference method. The aver-(VB 2 VA)/VB. Similarly, for vestige BA, the normalized

error will be (VA 2 VB)/VA. The same applies to vestiges aging and feedback technique used here is essentially the
same as in other finite-difference methods. Only the globalBC and CB. Once a normalized error term is calculated

for each of these vestiges, that normalized error is used in mechanism is different in this case.
Eq. (22) to improve the estimation of the field intensities 5. Calculating an improved inflection potential Vinf. Fol-
at the parent points of the vestige (note that the error in lowing the improvement of the Neumann conditions de-
potential, to a first order, is directly proportional to the scribed in the previous step, a new, improved value of Vinf
error in field intensity). This process is illustrated more must now be calculated for each group of start regions. To
clearly in Fig. C6 below. In the figure, each support point calculate this new Vinf, simply average the values of the
is connected to its parent point by an arrow representing potentials of all the individual envelopes in the group. In
the trajectory of the field line inside the domain (the direc- Fig. C6, the new Vinf for the group A-B-C will be the
tion of the arrow only illustrates that the conditions at average of the potentials of the three envelopes shown in
the support point are used as feedback to improve the the figure.
conditions at the parent point). Since the normalized error

6. Tracing the intermediate regions. This is the last step
term calculated for a particular vestige is the same for all

in the algorithm and consists of several small steps (if
the support points on the vestige, that normalized error

it was determined from step 3 that the problem has no
term will also be the same for all the parent points of the

intermediate regions, skip this step). As indicated pre-
viously, intermediate regions exist when the domain of the
problem contains more than one singular point. In the
simple case of Fig. 6, only one singular point exists inside
the domain and, therefore, all the start regions converge
at this singular point and no intermediate regions are cre-
ated. In the more practical case of Fig. 8, three different
singular points exist (shown clearly in Fig. C3). In order
to trace the intermediate regions and, hence, cover the
domain of the problem, proceed as follows:

1. Take the list of free inflection points obtained in
step 4, phase B above. Organize the list such that the first
point listed is the first point in Group 1 (if not already
organized as such from Phase B). In the case of Fig. C2b,
the list of free inflection points will be: P1,2, P7,8, P9,10,
P11,12, P17,18, P19,20, and P23,24 (note that the notation Pi, j

has been used as a shorthand for Pi , Pj , which designates
the pairs of characteristic points). It is important to observe

FIG. C6. The correction of the field intensities at the parent points that the order in which groups are listed is arbitrary (the
of vestiges AB and BA shown in Fig. C5. Likewise, the parent points of group A-B-C, or Group 1 shown in Fig. C4, can equally
vestiges BC and CB will be corrected. It is to be observed that only some be labeled Group 2 or Group 3, depending on the order
of the parent points in regions A and C belong to the vestiges, while the

in which the program detects and labels the first group),remaining points in those two regions belong to the group envelope and
and hence the inflection point P1,2 could be associated withwill not be corrected at this stage. On the other hand, all the parent

points in region B will be corrected in this procedure. one of the other two groups shown in the figure.
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2. For the list created in the previous sub-step, create different groups, such form of organization for the list will
be unacceptable for processing. If such is the case, thena companion list showing the group number to which each

of the free inflection points belong. In Fig. C2b, P1,2 and the list of free inflection points must be reorganized such
that Group 1 or Group 2 is on the top of the list. This canP7,8 belong to Group 1; P11,12 and P17,18 belong to Group

2; and finally P19,20 and P23,24 belong to Group 3. Note that be simply achieved by moving the points of Group 3, P19,20

and P23,24, to the end of the list. The list will then appearthe point P9,10 does not belong to any group and will,
therefore, be marked ‘‘unassociated’’ (with a special flag as shown in Fig. C7a.

In summary, the organization of the list of free inflectionor digit).
points must be such that the two points which are nearest3. Starting from the two points listed for Group 1
to the first group listed must be both associated with one(the first two points in the list), search for the two nearest
group, or one is associated while the other is unassociated.points on the boundary, which are also the two nearest
The list then can be shuffled as explained above until thispoints in the list. Figure C7a shows the list of free inflection
organization requirement is met.points and shows that point P9,10 is the nearest to point

P7,8. Since the boundary is closed, the point nearest to P1,2 4. Having organized the list as explained above and
will be the one at the end of the list, which is P23,24. Having determined the two points which are nearest to the first
determined the two nearest points, check the companion group listed, start, from the envelope of the first group (in
list to determine the group number with which each point is this case Group 1), tracing equipotentials progressively
associated. As we shall observe, point P9,10 is unassociated, inside the domain (as explained in step 1, Phase C). For
while point P23,24 belongs to Group 3. Such conditions will the case of Fig. C7a, we now observe the following: while
indicate that the list of free inflection points, as organized, the point P9,10 is unassociated, P23,24 belongs to Group 3,
is acceptable for processing. Another possible organization and therefore we conclude that the equipotentials pro-
for the list is: P11,12, P17,18, P19,20, P23,24, P1,2, P7,8, P9,10; in gressing from Group 1 will terminate on the boundaries
which Group 2 appears in the first place. Here, the two of Group 3 (these equipotentials will constitute the first
nearest points to Group 2 will be P19,20, and P9,10. Since intermediate region shown in Fig. C4). When the inflection
P19,20 is associated with Group 3, and P9,10 is unassociated, potential Vinf listed for Group 3 is reached or passed, the
such alternative organization is also acceptable for pro- tracing is stopped, and the last equipotential traced is re-
cessing. A third possible alternative is: P19,20, P23,24, P1,2, corded.
P7,8, P9,10, P11,12, P17,18; where Group 3 appears in the first

5. The two nearest points located in sub-step 3 aboveplace. In this case, however, the two nearest points are
will now be used as links, which serve the purpose of vestigeP1,2, which belongs to Group 1, and P17,18, which belongs
elimination. Since the point P23,24 belongs to Group 3, andto Group 2. Since the two nearest points belong to two
the point P9,10 is unassociated, only P23,24 will be taken as
link in this case. Figure C8 shows the last equipotential
traced in Intermediate Region 1 being located at or very
close to the two inflection points P23,24 and P9,10. By taking
the pair of characteristic points P23,24 as a link, follow the
procedure explained in step 3, Phase C, for eliminating
two vestiges as shown in Fig. C8. As shown, one of the
vestiges to be eliminated is a portion from the envelope
of Group 3 and the other is a portion from the last equipo-
tential traced in Intermediate Region 1. (Clearly, the ves-
tige elimination procedure must preferably be a separate
routine). For each vestige, calculate a normalized error
term as explained in step 4, Phase C, and correct the Neu-
mann conditions at the parent points of the vestige (again,
this feedback procedure can be part of the separate rou-
tine). It can be observed from Fig. C2b that the parent
points which will be corrected in this step are some of the
parent points in regions H and A. It is very important to

FIG. C7. The list of free inflection points on the boundary in the note that, as equipotentials are traced progressively inside
example of Fig. C2b. In the first sweep (a) to trace an intermediate region, the domain, the ID number of a given support point, which
the pair of characteristic points P23,24 is used as a link, while the pair

is the number of the parent point on the boundary, mustP19,20 is not used. In the second sweep (b), P19,20 is moved to the top of
be propagated to the next support point obtained alongthe list (see text), and finally both points in Group 2 are used as links;

which signals the end of the task. the field line (as explained in step 1, Phase C), so that the
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group follows immediately point P9,10, that point is also
selected; hence, both free points in Group 2 will be used
as links in sub-step 5 above. Sub-step 6 will then eliminate
all entries in the list of free inflection points. Note that
each sweep through sub-steps 4 to 6 traces one intermedi-
ate region. Therefore, in Fig. C8, two sweeps will be per-
formed in order to trace the two intermediate regions
shown (which can also be concluded from Fig. C7).

Iterations. Repeat Phase C (steps 1 through 6), until a
prespecified error criteria is met (the error between two
successive iterations is smaller than a prespecified incre-
ment. This prespecified increment must preferably be
equal to or smaller than the error bound « used throughout
the algorithm).

C.3. Pseudo-Code of the Equipotential
Tracing Function

The basic equipotential tracing function described in
Section 2.1 and used in steps 1 and 6, Phase C, is listed

FIG. C8. The sweep to trace the first intermediate region inside the here in detailed, pseudo-code form:
domain of Fig. C2b. The last equipotential traced in that region is obtained
when Vinf of the target group (Group 3) is reached. Two vestiges are (a) For a given start point Ps or a start equipotential,
then eliminated at the location of the link P23,24, and a new envelope is calculate the minimum critical ratio iE i/2K, as described
created. From that envelope, a second sweep is initiated to trace Interme- in step 1, Phase C, and select a step size of potential DVdiate Region 2.

by dividing that critical ratio by some constant (preferably
10 or higher; note that such a constant controls the accuracy
of the solution). Select then two points on the boundarylocation of the parent point can be immediately identified
around Ps of a potential V2 such that uV1 2 V2u # DV, asat any stage in the procedure. The vestige elimination rou-
described in step 1.tine will finally deliver the new envelope shown in Fig. C8.

(b) Calculate a displacement Ds 5 DV/iE i at the start6. We now make reference to Fig. C7b. The objective
point, as described in Section 2.1; or, for a start equipoten-now is to eliminate from the list of free inflection points
tial, calculate several displacements, one for each pointthe two points P1,2 and P7,8 which belong to Group 1 and,
defined on the equipotential. Calculate then the X and Yalso, any points which have been used as links (in this case,
coordinates of the support points on the new equipotentialP23,24). Note that point P9,10 was not used as link and,
inside the domain, as well as the ID numbers at thesetherefore, will not be eliminated from the list. Next, the
points, by using the following three formulas:remaining point in the target group (Group 3) which was

not used, point P19,20, is moved to the top of the list. The
modified list is shown in Fig. C7b. (Had both points in the X(new)[k 1 1] 5 X(old)[k] 1 Ds[k] p dX [k],
target group been used as links, this would indicate the

Y(new)[k 1 1] 5 Y(old)[k] 1 Ds[k] p dY [k], (38)end of the task and the end of the algorithm, as will be
explained shortly). The two points on the top of the list ID[k 1 1] 5 ID[k],
now belong to the new envelope, as can be seen in Fig.
C8. The same elimination and rearranging procedure must

where k is a counter (from 0 to n 2 1) and dX, dY are thealso be performed on the companion list that shows the
global direction cosines calculated in step 2, Phase B. Notegroup with which each point is associated (the two points
that the order of points on the new equipotential has beenbelonging to the new envelope must be marked with a
shifted by one to allow for the data (X, Y, and ID) ofspecial flag or digit).
the two newly selected boundary points to be inserted at7. Starting from the newly obtained envelope, repeat
locations [0] and [n 1 1] in the arrays.sub-steps 4 to 6 above, until both free points in the target

group are used as links. In Fig. C7b, the target group is (c) For the newly obtained support points inside the
domain, calculate the field intensity at each of these pointsGroup 2, and, as shown, point P17,18, being at the end of

the list, is selected. However, since point P11,12 of that by using Eq. (9) of Section 2.1, expressed as
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iE i(new)[k 1 1] 5 iE i(old)[k] p (1 2 Ds[k] p K [k]), (39) the boundary, initialize the two arrays by copying the val-
ues of dX, dY on the boundary into the new arrays. The
locations 0 and n 1 1 in those arrays will be filled by thek 5 0 to n 2 1, where K is the curvature calculated and used
values of dX, dY already available at the two newly locatedin (a) above. (Note that the sign of K always determines
boundary points. Those arrays will be now destroyed andwhether iE i will be decreasing or increasing.) At the two
refilled with new values for the new equipotential; andboundary points 0 and n 1 1 of the new equipotential, the
this process will be repeated for each new consecutivefield intensity iE i was calculated in step 2, Phase B, and
equipotential curve obtained inside the domain. The fol-is already available at those points.
lowing lines of code will calculate the correct direction(d) For the newly obtained support points inside the
cosines of the electric field vectors at the new supportdomain, 1 to n, calculate the values of l and a (see Appen-
points 1 to n, given that the old values are present indix B) from the following two formulas:
the arrays:

for(k 5 1 to n)l[k] 5
X [k 1 1] 2 X [k]

X [k 1 1] 2 X [k 2 1]
,

u 5 arc tan(y9[k]) 1 1.57079632;
if(cos u p dXinternal 1 sin u p dYinternal) , 0

a[k] 5
6

X [k 1 1] 2 X [k 2 1]
(40) let u 5 arc tan(y9[k]) 2 1.57079632;

dXinternal 5 cos u;
dYinternal 5 sin u;

p SY [k 1 1] 2 Y [k]
X [k 1 1] 2 X [k]

2
Y [k] 2 Y [k 2 1]
X [k] 2 X [k 2 1]D .

The if statement in the above procedure checks if the
angle between the old and the new vectors is larger than 908

Then, call a Gaussian elimination routine to obtain the (an impossibility), and adjusts the new angle accordingly,
values of the moments at the n points, M [1] to M [n]. using the slope y9(x) of the tangent to the equipotential.
Finally, set M [0] 5 M[n 1 1] 5 0, as described in Appen- The procedure then replaces the old values present in the
dix B. arrays with the new values calculated.

(e) By using the array of moments M [0] to M [n 1 1] (g) Repeat procedures (a) to (f) described above to
obtained in (d), calculate the first derivative of the function trace each new equipotential curve inside the domain.
y 5 f(x) at all the support points 0 to n 1 1 by using

C.4. Applicability of the Algorithm toformula (34) of Appendix B, expressed as
Exterior Domains

Problems in exterior domains, in general, are not asy9[k] 5
Y [k 1 1] 2 Y [k]
X [k 1 1] 2 X [k]

2 (X [k 1 1] 2 X [k])
trivial as the simple example shown in Fig. 7. The classical
approach for performing computations in exterior domains

p SMk11

6
1

Mk

3 D , for k 5 0 to n;

(41)

used in various methods is to divide the open domain of
the problem into two or more closed subdomains and to
solve inside each of these subdomains as in a standard

y9[k] 5
Y [k 2 1] 2 Y [k]
X [k 2 1] 2 X [k]

2 (X [k 2 1] 2 X [k]) interior problem. Figure C9 below shows an irregular
boundary, which may be the surface of an airfoil, for exam-
ple. As shown, the open domain around the boundary is

p SMk21

6
1

Mk

3 D , for k 5 n 1 1.

Now, calculate the curvature K at the support points 1 to
n of the new equipotential by using formula (35) of Appen-
dix B. For the two boundary points 0 and n 1 1, calculate
K by using the quantity iE i/s known at those points, as
K 5 2(iE i/s)/iE i.

(f) The final calculation in this procedure is to obtain
new direction cosines which represent the directions of the
electric field vectors at the newly obtained support points
inside the domain. For that purpose, two new arrays of
n 1 2 values each will be required. Let such two arrays
be named dXinternal and dYinternal. If the new equipotential FIG. C9. The subdivision of an exterior domain into two interior

domains with closed boundaries.has directly resulted from a start point or equipotential on
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8. J. Stoer and R. Bulirsch, Introduction to Numerical Analysissubdivided into two separate, closed regions, where the
(Springer-Verlag, New York, 1980), p. 93.conditions along the boundary of each region are known,

9. R. Varga, Matrix Iterative Analysis (Prentice–Hall, Englewood Cliffs,as, for example, the steady-state conditions at a large dis-
NJ, 1962).tance away from the airfoil. Each of the two regions can

10. D. Young, Iterative Solution of Large Linear Systems (Academicthen be treated as a separate interior problem.
Press, New York, 1971).

Such a well-known approach for solving boundary value
11. W. H. Hayt, Jr., Engineering Electromagnetics (McGraw–Hill, New

problems in exterior domains can be equally used in the York, 1981).
case of the geometric method without any difficulty. 12. J. Clerk Maxwell, A Treatise on Electricity and Magnetism (Dover,

New York, 1954), p. 154.
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